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Radiation of solitons described by a high-order cubic nonlinear Schro¨dinger equation

V. I. Karpman*
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel

~Received 9 September 1999!

The resonant radiation of solitons due to higher order dispersion, described by an extended nonlinear
Schrödinger ~NLS! equation with nonlinear~cubic! dispersive terms and linear terms with third and fourth
derivatives, is studied. The basic equation includes, as a particular case, a higher order derivative NLS equa-
tion. General properties of the master equation, such as conservation laws, Hamiltonian structures~in important
particular cases!, and Galilei transformation are studied. Explicit asymptotic expressions, describing the radia-
tion at different initial conditions, are derived. The obtained results, in particular, provide a basis for the study
of soliton losses, caused by the radiation, in optical fibers.

PACS number~s!: 42.65.Tg, 52.35.Mw
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I. INTRODUCTION

We consider the resonant radiation of solitons descri
by highly dispersive cubic nonlinear Schro¨dinger ~NLS!
equation

i ]TC1
1

2
]X

2C1auCu2C1 ia1uCu2]XC1 ia2C]XuCu2

1 ia3]X
3C1a4]X

4C50, ~1!

wherea andan , 1<n<4, are real constants. Equation~1!
plays an important role in the nonlinear fiber optics@1#. The
radiation of a NLS soliton caused by higher order linear d
persion witha15a250 and the reverse action of radiatio
on a moving soliton were studied in Refs.@2,3#. In this paper,
we shall apply Eq.~1! to the investigation of the soliton
resonant radiation taking into account the nonlinear disp
sive terms with nonvanishinga1 anda2 . ~The terma2 de-
scribes induced Raman effect and, generally,a2 should be
complex. In many cases, however, Ima2!Rea2 and in this
paper Ima2 is neglected.! Three particular cases of Eq.~1!
are of special interest.

~i! At

a51, ua3u1ua4u!1, ua1u1ua2u!1 ~2a!

we shall find corrections to the results obtained in Refs.@2,
3#, where nonlinear dispersive terms had been neglected

~ii ! In the case

a51, ua3u1ua4u<1, ua1u1ua2u<1, or ua1u1ua2u;1,
~2b!

we find and investigate the radiation of solitons with acco
of cubic dispersive terms.

~iii ! At

a50, ua3u1ua4u!ua1u1ua2u;1, ~2c!
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we will investigate the influence of higher order dispersi
on the soliton of derivative NLS~DNLS! equations@4,5#. @At
certain relations between coefficientsan , Eq. ~1! is solvable
by the inverse scattering transform@6,7#; however, these re-
lations are very special.#

The radiation should lead to the soliton attenuation a
corresponding variations of its parameters. For the soli
with sufficiently large lifetime, its parameters should chan
slowly enough. As in previous papers@2,3,8,9# ~see also ref-
erences therein! we assume that the soliton radiation is sm
enough and use an adiabatic approach, considering firs
radiation of a soliton with constant parameters; then
changes of soliton parameters can be evaluated from con
vation laws. It will be shown that the intensity of solito
radiation is exponentially small if the soliton width is muc
larger than the inverse wave number of radiation. Theref
the adiabatic approximation is well justified if the ratio of th
soliton width to the inverse wave number of radiated wave
a large parameter~a necessary condition of that is a sma
ness of coefficients in linear highly dispersive terms!. The
soliton attenuation, caused by the radiation, will be studied
a forthcoming paper.

This paper is organized as follows. In Sec. II we consid
the conservation laws that follow from Eq.~1!. It appears
that the forms of conserving quantities essentially depend
relations between the coefficients in Eq.~1!. Two important
particular cases are studied in this section:~1! a250 and~2!
a50, a15a2 . Apart from the conservation laws, we de
scribe the Hamiltonian structures for these cases and s
that they are also rather different. The results of this sec
will be used in subsequent papers for the investigation
soliton attenuation caused by the radiation. In Sec. III
consider the Galilei transformation for Eq.~1! and apply it
for the description of moving solitons. In Sec. IV we inve
tigate the soliton solutions to Eq.~1! in ‘‘zero approxima-
tion,’’ neglecting the linear terms with~small! a3 and a4 .
The restrictions ona1 and a2 are not imposed, except fo
Im a250. The results of this section are used in Sec.
where the asymptotic theory of the resonant soliton radia
is developed. In Sec. VI we discuss and summarize the
tained results.
5678 ©2000 The American Physical Society
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II. CONSERVATION LAWS: HAMILTONIAN
STRUCTURES

The simplest conserving quantity, following from Eq.~1!,
is the so-called ‘‘adiabatic invariant’’

N5E
2`

`

uC~X,T!u2 dX,
dN

dt
50. ~3!

This follows from the equation

]TuCu21]XS i

2
~C]XC* 2C* ]XC!1

1

2
~a112a2!uCu4D

1a3]X~C* ]X
2C1C]X

2C* 2u]XCu2!2 ia4]X~C* ]X
3C

1]X
2C* ]XC2C]X

3C* 2]X
2C]XC* !50

which can be easily derived from Eq.~1!. Other conserving
quantities depend on relations between coefficients in
~1!. As important examples, we consider two cases.

(1) Casea250. In this case, Eq.~1! can be obtained from
the variational principle with the Lagrange density

L5
1

2
i ~C* ]TC2C]TC* !2

1

2
u]XCu21

1

2
auCu4

1
1

4
ia1uCu2~C* ]XC2C]XC* !

1
1

2
ia3~C* ]X

3C2C]X
3C* !1a4u]X

2Cu2. ~4!

From Eq.~4! we find, in addition to Eq.~3!, two more con-
servation laws:

dP

dt
50, P5

1

2
i E

2`

`

~C]XC* 2C* ]XC!dX, ~5!

dH

dt
50, H5

1

2
i E

2`

`

~C* ]TC2C]TC* !dX2E
2`

`

L dX.

~6!

Expressions forP and H follow from the invariance of the
Lagrangian with respect to space and time shifts. Theref
P will be called momentum andH total energy of the wave
field. SubstitutingL in Eq. ~6!, we arrive at the expression

H$C,C* %5E
2`

`

dXH 1

2
u]XCu22

1

2
auCu4

2
1

4
ia1uCu2~C* ]XC2C]XC* !

2
1

2
ia3~C* ]X

3C2C]X
3C* !2a4u]X

2Cu2J .

~7!

One can check that Eq.~1! can be expressed through th
variational derivative of the functionalH$C,C* %
q.

e,

i ] tC5
dH$C,C* %

dC*
. ~8!

Equation~8! is a particular case of a general equation for a
functionalA$C,C* %

] tA5@H,A#, ~9!

where @A$C,C* %,B$C,C* %# is the Poisson bracket, de
fined as for the regular NLS equation@10#

@A$C,C* %,B$C,C* %#

5 i E
2`

`

dXS dA

dC

dB

dC*
dB

dC*
2

dA

dC*
dB

dC D ,

~10!

and therefore ensuring the validity of the Jakobi identi
Thus the wave field governed by Eq.~1! with a250 is a
Hamiltonian system@11#.

(2) Casea50, a15a2. Here, Eq.~1! can be written as

i ]TC1
1

2
]X

2C1 ia1]X~ uCu2C!1 ia3]X
3C1a4]X

4C50,

~11!

and one can define the Poisson brackets as for the DN
equation@4#

@A$C,C* %,B$C,C* %#

5E
2`

`

dXS dB

dC
]X

dA

dC*
1

dB

dC*
]X

dA

dC D . ~12!

Defining the Hamiltonian as

H5E
2`

`

dXS 1

2
iC* ]XC2

1

2
a1~CC* !2

2a3C* ]X
2C1 ia4C* ]X

3C D , ~13!

one can check that equation

] tC5@H,C# ~14!

leads to Eq.~1! with a50, a15a2 , and the evolution of
any functionalA$C,C* % is determined by Eqs.~9! and~12!.
Evidently, for the case in question one can again check
conservation of the adiabatic invariantN$C,C* % from Eqs.
~3!, andH$C,C* % from Eq. ~13!.

III. MODIFIED GALILEI TRANSFORMATION

The transformation

C~X,T!5c~X2VT,T!ei ~KX2VT!, ~15!

being applied to the regular NLS equation (an50) with

K5V, V5
1

2
K2, ~16!
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5680 PRE 62V. I. KARPMAN
describes the transition to the reference frame moving w
velocity V and leaves the regular NLS equation unchang
This well known result can be expressed as the invarianc
the regular NLS equation with respect to the Galilei transf
mation ~15!,~16!. Applying ansatz~15! to Eq. ~1!, we come
to the equation of the same structure if

V5
1

2
K22a3K32a4K4, ~17!

V5K23a3K224a4K3. ~18!

Indeed, the transformation~15! with Eqs.~17! and ~18!, de-
terminingV andK at givenV, leads to the following equa
tion for c

i ] tc~x,t !1
1

2
a2]x

2c1qucu2c1 ia1ucu2]xc

1 ia2c]xucu21 ia3]x
3c1a4]x

4c50, ~19!

where

x5X2VT, t5T, ~20!

a25126a3K212a4K2, ~21!

a35a314a4K, a45a4 , ~22!

q5a2a1K. ~23!

~In the following we assumea2.0.) Equations~1! and~19!,
in spite of different coefficients, have a similar structu
This allows us to say that Eq.~1! is essentiallyinvariant with
respect to the Galilei transformation. Atan50, we have the
complete Galilei invariance.

IV. SOLITON SOLUTIONS OF EQ. „1… WITHOUT LINEAR
HIGHLY DISPERSIVE TERMS

Consider soliton solutions to Eq.~1! at

a35a450. ~24!

They were derived in a number of papers; we shall do thi
a form convenient for the investigation of the soliton rad
tion. Looking for the soliton solution in the form

cs~x,t !5expH i F1

2
l2t1w~x!G J u~x!,

u~x!→0 ~x→6`!, ~25!

we substitute Eqs.~25! and ~24! into Eq. ~19! at ~24!. After
some calculations~see the Appendix!, we arrive at the equa
tions

~u8!25l2u22qu42A2u6, ~26!

w852
1

2
~a112a2!u2, ~27!

where
h
d.
of
-

.

n
-

u85
du

dx
, w85

dw

dx
, ~28!

and

A25
4a1~a112a2!2~a112a2!2

12
. ~29!

These results are approximately valid at sufficiently sm
a3,4 if K, connected with the soliton velocity, satisfies lim
tations following from~21!:

6a3K!1, 12a4K2!1. ~30!

Equation~26! can be written as

~u8!25A2u2~u0
22u2!~u1

21u2!, ~31!

where

u0
25

A4A2l21q22q

2A2 , ~32!

u1
25

A4A2l21q21q

2A2 . ~33!

It is easy to see that

u1
2>u0

2.0 ~q>0!, u0
2>u1

2.0 ~q<0!, ~34!

provided

A2.0. ~35!

Condition ~35!, which will be assumed hereafter, impos
restrictions ona1 anda2 : it is satisfied in the region of the
plane (a1 ,a2), shown in Fig. 1. In particular, this regio
includes casesa250 anda15a2 , considered in Sec. II; this
agrees with the explicit expression

A25
a1

2

4a2
~a250 or a15a2! ~36!

FIG. 1. Domain in the plane (a1 ,a2) whereA2.0 ~hatched!. It
is situated between the linesL1 @a25(3/2)a1# and L2 @a25
2(1/2)a1#.
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PRE 62 5681RADIATION OF SOLITONS DESCRIBED BY A HIGH- . . .
that follows from Eq.~29!. @If condition ~35! is satisfied, we
defineA.0.#

From Eqs.~35! and ~31! it is seen that in the soliton

0,u~x!<u0

and, therefore,u0 is the soliton amplitude. From expressio
~32! and ~33! one obtains

u15l/Au0 . ~37!

It can also be seen from Eq.~26!, that the soliton width is of
orderl21. Indeed, at largex, whereu(x) is small, we have

u8'6lu, l.0. ~38!

Therefore, the inverse width of the soliton is of orderl.
Equation~37! expressesu1 through the soliton width, ampli-
tude, and parameterA(a1 ,a2).

Integrating Eqs.~26! and ~27!, we have

u~x!5u0u1@u0
2 sinh2~lx!1u1

2 cosh2~lx!#21/2, ~39!

w~x!52
a112a2

2A
arctanFu0

u1
tanh~lx!G . ~40!

The constant of integration in Eq.~40! is insignificant.
These expressions approach the soliton solution of

regular NLS equation~wherea51) if

4A2l2!q2, ~41!

q'1 ~ i.e.,ua1Ku!1!. ~42!

Indeed, from Eqs.~32!,~33! and ~41!,~42! it follows

u0'l, u1'1/A, ~u0 /u1!2'A2l2!1. ~43!

Then Eqs.~39! and ~40! are approximately reduced to th
soliton solution of the regular NLS equation:

u~x!'u0 sech~u0x!, w~x!'0. ~44!

V. RESONANT SOLITON RADIATION

A. Quasisolitons and resonant wave numbers

At ua3u1ua4u.0, Eqs.~1! and~19! respectively, may not
have soliton solutions vanishing atuxu→` and regular in the
limit ua3u1ua4u→0. The corresponding criterion at

ua3u1ua4u!1, ~45!

will be obtained below. However, even if such solitons
not exist but condition~45! is held, one can find weakly
radiating ~and therefore slowly attenuating! pulses looking
like solitons approximately satisfying Eq.~1!. They can be
called quasisolitons and will be studied in this section,
gether with their radiation. Our approach is similar to the o
developed in Refs.@2,3# where quasisolitons, their radiation
and evolution were investigated fora1,250 ~see also refer-
ences cited in Refs.@1,2#!.

Assuming Eq.~45!, we write the solution of Eq.~19! in
the form
e

-
e

c~x,t !5@ ũ~x!1h~x,t !#expF1

2
il2t1 i w̃~x!G , ~46!

where

c̃s~x,t !5ũ~x!expF1

2
il2t81 i w̃~x!G , ~47!

is the soliton solution of Eq.~19! without the two last terms.
Expressions forũ(x) and w̃(x) can be found similar to

Eqs.~39! and ~40!; the only difference is that nowa2Þ1. It
is easy to find that

ũ~x!5ũ0ũ1F ũ0
2 sinh2S l

Aa2

xD 1ũ1
2 cosh2S l

Aa2

xD G21/2

,

~48!

w̃~x!52
a112a2

2A
arctanF ũ0

ũ1
tanhS l

Aa2

xD G , ~49!

where a2 is defined in Eq.~21! with ua3u1ua4uÞ0 and
ũ0 ,ũ1 are given by

ũ0,1
2 5

a2

2A2 SA4A2l2

a2
1q27qD . ~50a!

In the following we assume thata2.0 anda2;1. It is easy
to see thatũ05ũ(0) is the amplitude of pulse~48! and,
similar to Eq.~37!:

ũ15lAa2/Aũ0 . ~50b!

Another term in the first bracket of Eq.~46!, h(x,t), is a
small addition describing the influence of two last terms
Eq. ~19!. The equation forh(x,t) can be obtained by subst
tuting Eq. ~46! into ~19!. It looks rather tedious, even afte
linearization with respect toh(x,t). However, atuxu@l,
where the cross terms containing the products ofũ(x) and
h(x,t) can be neglected, the resulting equation becom
much simpler and has the form

i ] th1
1

2
a2]x

2h1 ia3]x
3h1a4]x

4h2
l2

2
h50. ~51!

It describes the asymptotic behavior ofh(x,t) at largeuxu and
can be easily obtained directly from the linearized Eq.~19!.

Looking for the solution to Eq.~51! in the form

h} exp~ ikx2 ivt !, ~52!

we come to the equation

2v2a2k212a3k312a4k42l250. ~53!

At v50 the wave~52! is steady in the soliton frame an
therefore it resonantly interacts with the soliton, ifk is real.
From Eq. ~53! we have the following equation fork at v
50

2a4k412a3k32a2k22l250. ~54!
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Assume that 4a4K!1. Then from Eqs.~45! and ~22! it fol-
lows that

a3!1, a4!1, ~55!

and Eq.~54! can be solved approximately. Neglecting t
first two terms in Eq.~54!, we have the two smallest roots o
this equation

k3,4'6 il/Aa2. ~56!

They are purely imaginary; other two roots should be mu
larger. Neglecting the last term in Eq.~54!, we arrive at the
equation

2a4k212a3k2a250, ~57!

which gives two other roots

k1,2'
2a36Aa3

212a2a4

2a4
. ~58!

Unlike k3,4, they are real if

a3
212a2a4.0, ~59!

~at a4>0, this condition is automatically fulfilled!.
To explore the meaning of the rootsk3,4, we substitute

v50 and Eq.~56! into ~52! and compare the result with Eq
~48!. Then we see that expression~56! represents the invers
length of the soliton; this is a natural result becauseh, as a
steady asymptotic solution in the soliton frame, must cont
a term describing the soliton asymptotic behavior.

On the other hand, at condition~59!, k1,2 are the wave
numbers of periodic waves resonantly interacting with
soliton. It will be seen below that such waves are emitted
the soliton and thus they may be called the resonant so
radiation ~RSR!. Respectively, the roots@Eq. ~58!# will be
called resonant wave numbers. Condition~59! is, therefore, a
necessary condition that the RSR does exist and Eq.~46!
describes the quasisoliton and its radiation. For brevity
call the pulse~47!–~49! radiating soliton @though it is, in
fact, not a soliton solution of full Eq.~19!#.

If condition ~59! does not hold and therefore allkj ’s are
complex, Eqs.~1! and ~19! have regular soliton solutions
They can be found, in particular, by means of the pertur
tion approach, using Eqs.~47!–~50! as the zero approxima
tion ~the derivation of exact solutions requires rather tedio
algebra!. In this paper, however, we will investigate the ca
when condition~59! does hold and so we will discuss on
the radiating solitons and their radiation.

The phase velocities of both branches of RSR are,
dently, equal to the velocity of radiating soliton. Their gro
velocitiesU j ( j 51,2) can be calculated from Eq.~53!. Dif-
ferentiating Eq.~53! with respect tok, we have

U j5S dv

dk D
k5kj

5a2kj23a3kj
224a4kj

3, ~ j 51,2!.

~60!

Using Eq.~57!, we can exclude the term witha4 to obtain
h

in

e
y
n

e

-

s

i-

U j'a3kj
22a2kj . ~61!

It is convenient to definek1,2 in such a way that

uk1u<uk2u. ~62!

Now consider two limit cases. At

a3
2@2a2ua4u, ~63!

we get

k1'
a2

2a3
, k2'2

a3

a4
, uk1u!uk2u, ~64!

U1'2
a2

2

4a3
, U2'

a3
3

a4
2 . ~65!

In the opposite case

a3
2!2a2ua4u, ~66!

condition ~59! is fulfilled only at a4.0 and we have

k1'2k2'2S a2

2a4
D 1/2

, ~67!

U1'2U2'a2S a2

2a4
D 1/2

. ~68!

The results in Eqs.~51!–~68!, naturally, coincide with those
obtained in Ref.@2#, where the cubic dispersive terms ha
not been considered. This is because they follow from
linearized Eq.~1!.

B. Amplitudes and asymptotic behavior of the RSR

To get a complete description of RSR, one must solve
~19! with proper initial conditions. For example, the cond
tion

h~x,t !50

at

t50 ~69!

means that initially we assume a ‘‘bare’’ soliton pulse d
scribed by Eqs.~47!–~50!. At t.0 the functionh(x,t) de-
scribes a soliton modification and the full radiation, consi
ing of the resonant radiation and a transient wave emi
due to the initial condition~69!. As we have already men
tioned, the full equation forh(x,t) is rather complicated and
it is, generally, difficult to find its analytical solution describ
ing these effects.$Such a solution, however, has been foun
e.g., for Langmuir solitons@12# where the equation for
h(x,t) is simpler. The soliton deformation and the full radi
tion can be seen in the numerical solutions of the original
~1!, as was demonstrated for the casea15a250 @3#.% In this
paper we will not study the soliton modification which i
generally, small at condition~45!, as well as the transien
effects that can be neglected at sufficiently larget andx. We
shall confine ourself to the derivation of an asymptotic a
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lytical expression describing the RSR at larget andx, using
the approach developed earlier for some other system
Refs.@8,9#.

It is convenient, first, to consider instead of Eq.~69! the
following inititial condition

h~x,2t0!50, t0@t tr , ~70!

wheret tr is the ‘‘transient’’ time, characterizing a duration o
the transient effects. This permits us to suppose thatt
50 the soliton can be considered as ‘‘dressed’’ and
scribed by

cds~x!5W~x!expF iF~x!1
1

2
il2t G . ~71!

The dressed soliton can be obtained, in principle, to
integer order ofa3 anda4 using a perturbation theory~see,
e.g., Refs.@1,13#!. In the zero approximation, it is equal t
the bare solitoncs , described by Eqs.~47! and ~48!–~50!.
Evidently,

cds~x!→0, ~ uxu→`!, ~72!

and the effective width ofcds(x) is of the order of bare
soliton width Aa2/l; so cds(x) is exponentially small at
uxu@Aa2/l. Define

d

dx
ln

cds~x!

cds~0!
5 i FdF

dx
1R~x!G , ~73!

where

R~x![2 i
d

dx
ln

W~x!

W~0!
. ~74!

Then

W~x!5W~0!expF i E
0

x

R~x!dxG . ~75!

As far as the transient radiation is neglected and the pa
h(x,t) describing the soliton deformation is included in E
~71!, we can write Eq.~46! at t.0 as

c~x,t !5H W~0!expF i E
0

x

R~x!dxG1 f ~x,t !J
3expF iF~x!1

1

2
il2t G , ~76!

where f (x,t) is part ofh(x,t) describing the RSR. At suffi-
ciently larget0 in Eq. ~70!, we can temporally taket05`
and write the asymptotic expression

f 5c1 expF i E
0

x

q1~x!dxGQ~U1x!

1c2 expF i E
0

x

q2~x!dxGQ~U2x!. ~77!
in

-

y

of
.

Here q1,2(x) are the wave numbers of RSR in the WK
approximation andc1,2 are the amplitudes of the correspon
ing modes. Evidently,

q1~x!→k1 , q2~x!→k2 , ~ uxu@Aa2/l!,

wherek1 ,k2 are the resonant wave numbers approximat
given by Eq.~58! andQ(Y) is the step function, defined a

Q~Y!51 ~Y.0!, Q~Y!50 ~Y,0!. ~78!

The Q functions in Eq.~77! express that the directions o
propagation and the localization of RSR are determined
the signs of the group velocitiesU j ( j 51,2) given by Eq.
~60!. At sufficiently largeuxu/l, the first term in Eq.~76! can
be neglected and then

c~x,t !' f ~x!expF iF~x!1
1

2
il2t G . ~79a!

On the other hand, atuxu,Aa2/l, the termf (x) is neglect-
able becausec1,2, as will be shown below, are very sma
with respect to the soliton amplitude. Thus, atuxu,Aa2/l,

c~x,t !'W~0!expF i E
0

x

R~x!dxGexpF iF~x!1
1

2
il2t G .

~79b!

Following Refs.@8,9#, we consider the continuations o
R(x) andq1(x),q2(x) in the complex plane and assume th
they are three branches of one analytic function. T
branches strongly couple near the branch points that are
roots of equations

R~z1!5q1~z1!, R~z2!5q2~z2!. ~80!

Generally, each of these equations has many roots in b
half-planes and will consider the roots with the smalle
imaginary parts which, as will be seen later, are the m
essential. A pass around the branch pointz1 or z2 leads to the
transitionq1(z)→R(z) or q2(z)→R(z).

To find the amplitudesc1 and c2 of RSR, we consider
contours in the complex plane with the ends on the real a
beginning at sufficiently large distance from the solit
(uxu@l). The branch points should be between the conto
and the real axis~Fig. 2!. @In the figure,z1,2 is purely imagi-
nary, which follows from symmetry considerations and c
also be seen from the subsequently obtained solutions of
~80!.# The choice of half-planes is determined by the rule

Im z152sgnk1 , Im z252sgnk2 . ~81!

Now consider, for example, a cased3,0, d4.0. Then

k1,0, U1.0, k2.0, U2,0, ~82!

and Imz1.0, Imz2,0. Consequently, if one moves alon
the contoursC1,2 ~Fig. 2!, starting from the pointsx1,2, the
integrals

i E
0

z

q1,2~x!dx' ik1,2z,
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increase withuIm zu. ~Compare with a similar situation in th
WKB theory @14#.!

To calculatec1 , consider expression~76! after a trip
along the contourC1 with x1,0andx.0. Properly deform-
ing C1 we see that this is equivalent to a walk around
branch pointz1, which leads to the transformation

R~z!→q1~z!.

On the other hand, traveling along the real axisx we have no
such changes. From Ew.~76! it is seen thatc(x,t) will be
the same in both cases if after the trip along the lineC1

W~x!↔ f ~x!5c1expF i E
0

x

q1~x!dxG . ~83!

On the other hand, from Eqs.~75! and ~74! it follows that

W~x!5W~zl !expF i E
z1

x

R~x!dxG . ~84!

Then, after the pass alongC1

W~x!→W~z1!expF i E
z1

x

q1~x!dxG . ~85!

Comparing~83! and ~85! we have

W~z1!expF i E
z1

x

q1~x!dxG5c1expF i E
0

x

qi~x!dxG ,
which gives

c15W~z1!expF2 i E
0

z1
q1~x!dxG . ~86!

Analogously, traveling along the contourC2 , we get

c25W~z2!expF2 i E
0

z2
q2~x!dxG . ~87!

Equations~86! and ~87! are similar to those obtained prev
ously for other systems with high-order dispersion terms@9#.

FIG. 2. ContoursC1 andC2 in the complex plane for the cas
~82!.
e

They seem to be of general significance. Their applicatio
however, become effective if one can use sufficiently sim
approximate expressions ofW(z) andq1,2(z). Below we use
rough approximations replacing

W~z!→ũ~z!, q1,2~z!→k1,2, ~88!

whereũ(z) is given by Eq.~48!, describing the bare soliton
and k1,2 are the asymptotic resonant wave numbers of
RSR. Similar approximations were used in Refs.@8,9#, where
it was demonstrated that they are rather efficient, leading
correct results. Rigorous justification of Eq.~88! for complex
z requires tedious algebra and will not be considered in
paper.

Thus, instead of Eqs.~86! and ~87!, we approximately
write

c1,2'ũ~z1,2!exp~2 ik1,2z1,2!. ~89!

To find z1,2, we replace Eq.~80! by approximate equations

R0~z1!'k1 , R0~z2!'k2 , ~90!

where

R0~z!52 i
d

dz
ln

ũ~z!

ũ~0!
. ~91!

To simplify further calculations, it is convenient to transfor
Eq. ~48! to the form

ũ~z!5ũ0

A11p

AcoshS 2l

Aa2

zD 1p

, ~92a!

where

p5
ũ1

22ũ0
2

ũ1
21ũ0

2 5
Aa2q

A4A2l21a2q2
. ~92b!

From Eqs.~50a! and ~92b! we have

ũ05lA 2p

~11p!q
. ~93!

From Eqs.~91! and ~92a!:

R0~z!5
l

Aa2

i sinhS 2l

Aa2

zD
coshS 2l

Aa2 z
D 1p

. ~94!

As far as wave numbersk1,2 are large, the roots of Eq.~90!
are located near the poles ofR0(z). The poles with the
smallest imaginary parts are

z656 i
Aa2

2l S p

2
1arcsinpD . ~95!

Therefore, we look for the roots of Eq.~90! in the form
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z1,252 i sgn~k1,2!
Aa2

2l S p

2
1arcsinp2z1,2D , ~96!

where

uz1,2u!
p

2
1arcsinp. ~97!

@In Eq. ~96! we also used Eq.~81!.# From Eqs.~90!, ~94!,
and ~96! we have the following equation forz1,2

p~12cosz1,2!1A12p2 sinz1,2

A12p2 cosz1,21p sinz1,2

5
l

Aa2uk1,2u
. ~98!

We will solve this equation assuming that its right-hand s
is small, i.e.,

uk1,2u@l/Aa2. ~99!

This means that resonant wave numbers should be m
larger than the inverse width of the soliton.~As will be seen
from further results, only in this case is the intensity of RS
sufficiently small.! Due to Eq.~99!, Eq. ~98! has small roots
z1,2 and can be written approximately as

z1,2

pz1,212A12p2

pz1,21A12p2
5

2l

Aa2uk1,2u
. ~100!

Taking into account Eq.~97!, we now consider two cases
The first one is

minS p

2
1arcsinp,1D@uz1,2u@A12p2. ~101!

This is possible ifp2 is sufficiently close to one. Ifp'21,
the branch points~96! are close to the real axis and furth
results will show that in this case the RSR is rather stro
Then the losses of the soliton would be large, which is
yond our adiabatic approximation. Therefore this case w
not be considered. So, we assume in Eq.~101! thatp is close
to one. Then,

z1,2'
2l

Aa2uk1,2u
~12p!1!. ~102!

In this case, it follows from Eqs.~92b! and ~93!

4A2l2!q2, ũ0'l/Aq. ~103!

If in addition q'1, we can neglect the nonlinear dispersi
terms in Eq.~1!, which leads to the theory ata15a250
@2,3#.

The second limit case is

uz1,2u!A12p2, ~104!

which includes, in particular, smallp. Then

z1,2'
l

Aa2uk1,2u
. ~105!
e

ch

.
-

ll

Now we can calculate the amplitudes of RSR. Accordi
to Eq. ~89!, we must first calculateũ(z1,2). Using Eqs.~92!,
~96!, and~97! we arrive at

ũ~z1,2!'ũ0F 2~11p!

2z1,2A12p21pz1,2
2 G 1/2

. ~106!

In case~101!, using~102!, we obtain

ũ~z1,2!'
2ũ0

z1,2
'ũ0

Aa2uk1,2u
l

. ~107!

In case~104!, using~105!, we have

ũ~z1,2!'Aũ0ũ1

z1,2
'SAa2l

A D 1/2SAa2uk1,2u
l D 1/2

. ~108!

Substituting Eqs.~96! and ~107! into Eq. ~89!, we obtain

c1,25B1,2u0

Aa2uk1,2u
l

expF2
pAa2uk1,2u

2l G . ~109!

Here we introduced complex constantsB1,2, emerging be-
cause of approximations made in determiningz1,2. These
approximations lead to the errors of order one in the ex
nent. By the order of magnitude,uB1,2u ranges from one to
ten. A precise calculation ofB1,2 is rather tedious. Becaus
they are not very essential, we will not explain this in t
present paper. The validity condition of expression~109! fol-
lows from Eq.~101!; after simple transformations it can b
written as

2Al

Aa2q2
!

2l

Aa2uk1,2u
!1. ~110!

This is possible only ifp is sufficiently close to11. At q
'1, from Eq.~103! we obtainu0'l and expression~109!
becomes the result obtained earlier fora1,250 @2#.

In case~104!, which can be written as

l

Aa2uk1,2u
!A12p25

2ũ0ũ1

ũ0
21ũ1

2 , ~111!

we have

c1,25B1,2SAa2uk1,2u
A D 1/2

3expF2
pAa2uk1,2u

4l S 11
2

p
arcsinpD G . ~112!

The constantsB1,2 in Eq. ~112! are introduced for the sam
reason as in Eq.~109! and they are of the same order.

Comparing Eqs.~109! and ~112!, we observe that at

lA

q2 ;
l

uk1,2u
!1 ~113!

~which is possible only at small 12p), they are of the same
order. The results of Ref.@2# are still valid at condition
~113!; this means that, in fact, the cubic dispersive terms



c

de

x-
e

re

e

e
d

ed
ird
i
s

ed

-
n

dd
d
rit
on

y-

ve

s
ly
ics.

ed
e-

on
ust
ed
pa-
tion
s

n

-
vo-
ith

ffi-
s
e-
r
ns
n,

G.

ely,

.

5686 PRE 62V. I. KARPMAN
Eq. ~1! are negligible~at q;1) not only at condition~110!
but in the broader region~113!.

Equations~109! and ~112!, together with Eq.~77!, de-
scribe the RSR at initial condition~70! with t052`. Using
these expressions forc1,2, we can also write an asymptoti
expression of the RSR for initial condition~69! at larget and
uxu ~where the transient effects can be ignored!. It reads

f ~x,t !>(
j 51

2

cjQ~ uU j ut2uxu!Q~U jx!eik jx. ~114!

Here, as before,UJ are the group velocities~60!. Equation
~114!, by comparison with Eq.~77!, contains additional fac-
torsQ(uU j ut2uxu) which mean that the corresponding mo
of the RSR at the momentt occupies the region betweenx
50 and uxu5uU j ut. Due to the asymptotic character of e
pression~114!, the soliton size as well as the fine structur
of the radiation fronts are ignored.

In the limit case~63!, the resonant wave numbers a
approximately given by Eq.~64! and so the contribution
from the second mode of the RSR can be neglected. Th
fore, in this case

f ~x,t !>c1Q~ uU1ut2uxu!Q~U1x!eik1x, ~115!

wherek1 andU1 are independent ona4 . From this it follows
that at condition~63! one can neglect the term with th
fourth derivative in Eq.~1!. In this case, the RSR is emitte
only in one direction, defined by the sign ofU1 ~which is
opposite to sgna3). At condition~66!, Eq.~114! contains two
terms with approximately equal amplitudes. From Eqs.~67!
and ~68! it then follows that in this case the RSR is emitt
in opposite directions and the contribution from the th
derivative term is negligible. Note that the second term
Eq. ~114! can be neglected not only in the extreme ca
uk1u!uk2u but also atuk1u,uk2u ~if uk1u and uk2u are not too
close to each other!.

VI. DISCUSSION

First, we would like to add two comments to the obtain
results.

~i! Equation~A1! of the Appendix, after substitution ex
pression~27!, contains a quintic term with respect to solito
amplitudeu. The term of the same order emerges if one a
the quintic termbuCu4C to Eq.~1!, which can be considere
as an account of the next order expansion of nonlinea
Repeating the calculations described in the Appendix,
then arrives at the same soliton Eqs.~26! and ~27! but with
the modified parameterA2:

A25
4a1~a112a2!2~a112a2!218b

12
. ~116!

However, the new termbuCu4C in Eq. ~1! leads to an ap-
propriate addition, namely2(b/3)(C* C)3, in the Hamil-
tonian ~7!; from this it is seen that the character of the d
namics of nonlinear patterns described by modified Eq.~1!
s

re-

n
e

s

y.
e

may be qualitatively changed. At sufficiently small negati
b the changes are not too serious, but atb.0 the quintic
term results in the soliton instability~in particular, it may
lead to the collapse! @15#. In this paper we restrict ourselve
with the cubic Eq.~1!, which is a good model, adequate
describing many phenomena in the nonlinear fiber opt
The quintic term at sufficiently smallb can be ignored when
the effects initiated by it are either negligible or~in the case
of instability! slow enough compared with those contribut
by the RSR. A detailed investigation of the systems d
scribed in Eq.~1! with the additional quintic term is given in
Ref. @15#.

~ii ! As we have already mentioned, the soliton radiati
takes energy and momentum from the soliton and this m
lead to soliton modification that was neglected in the us
above adiabatic approximation. The changes of soliton
rameters can be evaluated analytically from the conserva
laws~3!, ~5!, and~6! under some simplifying assumptions, a
was done in Ref.@2# for a15a250, a450. In this case the
soliton amplitude decreases with time logarithmically. O
the contrary, the soliton velocityV(t) increases~also loga-
rithmically! and

sgnV̇~ t !52sgnk15sgnU1 . ~117!

These results were confirmed numerically@3#. An approach,
extending the asymptotic method of Ref.@2# for finite but
sufficiently smalla1 and a250, a450 gives the same re
sults. A more detailed and general investigation of the e
lution of radiating solitons will be done in another paper w
Shagalov and Rasmussen.

In conclusion, we have studied Eq.~1!, representing ad-
equate models for important nonlinear systems. At su
ciently small a3,4, Eq. ~1! describes quasisteady soliton
resonantly emitting radiation. The soliton core is mainly d
scribed by Eq.~19! without the two last terms while the latte
plays a decisive role in the RSR. Asymptotic expressio
describing RSR are derived. The Galilei transformatio
conservation laws, and Hamiltonian structures for Eq.~1! are
also studied.
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APPENDIX: DERIVATION OF EQS. „26… AND „27…

Substituting Eq.~25! into Eq. ~19! with a35a450, a2
51 and separating real and imaginary parts we, respectiv
have

u92l2u2~w8!2u12qu322a1w8u350, ~A1!

w9u12w8u812~a112a2!u2u850. ~A2!

Multiplying Eq. ~A2! by u and integrating, we arrive at Eq
~27!. Substituting Eq.~27! into Eq. ~A1! and then multiply-
ing by u we have, after integration, Eq.~26!.
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