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Radiation of solitons described by a high-order cubic nonlinear Schrdinger equation

V. I. Karpmarf
Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
(Received 9 September 1999

The resonant radiation of solitons due to higher order dispersion, described by an extended nonlinear
Schralinger (NLS) equation with nonlineatcubic) dispersive terms and linear terms with third and fourth
derivatives, is studied. The basic equation includes, as a particular case, a higher order derivative NLS equa-
tion. General properties of the master equation, such as conservation laws, Hamiltonian stfncitugstant
particular casesand Galilei transformation are studied. Explicit asymptotic expressions, describing the radia-
tion at different initial conditions, are derived. The obtained results, in particular, provide a basis for the study
of soliton losses, caused by the radiation, in optical fibers.

PACS numbds): 42.65.Tg, 52.35.Mw

[. INTRODUCTION we will investigate the influence of higher order dispersion
on the soliton of derivative NLEDNLS) equationg4,5]. [At

We consider the resonant radiation of solitons describedertain relations between coefficients, Eq. (1) is solvable
by highly dispersive cubic nonlinear Scinger (NLS) by the inverse scattering transfofi,7]; however, these re-
equation lations are very specigl.

The radiation should lead to the soliton attenuation and
corresponding variations of its parameters. For the soliton
with sufficiently large lifetime, its parameters should change
slowly enough. As in previous pap€r,3,8,9 (see also ref-
erences therejrwe assume that the soliton radiation is small
) enough and use an adiabatic approach, considering first the
wherea anda,, 1=n<4, are real constants. EQuatill  ,jiation of a soliton with constant parameters: then the

pl?jyst_an 'Tpoﬁigt ro:_etz in the no;lkljnerz]i_r Eber ogtﬁct% The di changes of soliton parameters can be evaluated from conser-
radiation of a soliton caused by igher orderin€ar disy o jaws. It will be shown that the intensity of soliton
persion witha;=@,=0 and the reverse action of radiation

. . o ' radiation is exponentially small if the soliton width is much
on a moving soliton were studied in Ref2,3]. In this paper, larger than the inverse wave number of radiation. Therefore
we shall apply Eq.(1) to the investigation of the soliton 9 :

resonant radiation taking into account the nonlinear dispert-he adiabatic approximation is well justified if the ratio of the
sive terms with nonvanishing, and a,. (The terma, de- soliton width to the inverse wave number of radiated wave is
scribes induced Raman effect and, generatly,should be a large parametefa necessary condition of that is a small-
complex. In many cases, however, #m<Rea, and in this €SS of coefficients in linear highly dispersive teymbhe
paper Ima, is neglected. Three particular cases of E€) soliton attenuation, caused by the radiation, will be studied in

1
oW+ §a§w+a|\1r|2\1f+ia1|qf|zaxqf+iazwx|~1f|2

+iagd3W + a,d5 ¥ =0, (1)

are of special interest. a forthcoming paper. '
(i) At This paper is organized as follows. In Sec. Il we consider
the conservation laws that follow from El). It appears
a=1, |ag|+|as <1, |aq|+|ay<1 (2g  that the forms of conserving quantities essentially depend on

relations between the coefficients in Ed). Two important

we shall find corrections to the results obtained in REfs. particular cases are studied in this sectidn:a,=0 and(2)
3], where nonlinear dispersive terms had been neglected. a=0, a;=a,. Apart from the conservation laws, we de-

(i) In the case scribe the Hamiltonian structures for these cases and show
that they are also rather different. The results of this section
a=1, |ag|+|ad <1, |ai|+|as<1, or|ay|+|ay~1, will be used in subsequent papers for the investigation of

soliton attenuation caused by the radiation. In Sec. Il we
consider the Galilei transformation for E@l) and apply it
we find and investigate the radiation of solitons with accounfor the description of moving solitons. In Sec. IV we inves-

of cubic dispersive terms. tigate the soliton solutions to Eq@l) in “zero approxima-
(iii ) At tion,” neglecting the linear terms witismall) a3 and a,.
The restrictions oy, and a, are not imposed, except for
a=0, |ag|+]|as<|ai]+]|as~1, (200 Ima,=0. The results of this section are used in Sec. V,

where the asymptotic theory of the resonant soliton radiation
is developed. In Sec. VI we discuss and summarize the ob-
*Electronic address: karpman@vms.huji.ac.il tained results.
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Il. CONSERVATION LAWS: HAMILTONIAN ' 5H{\If,'\ll*}
STRUCTURES i0yW= s (8)
The simplest conserving quantity, following from E@), ) . ] ]
is the so-called “adiabatic invariant” Equation(8) is a particular case of a general equation for any
functional A{W,W*}
o dN
N=f [P (X, T)|2dX, TR (3) aA=[H,A], 9
_ . where [A{¥,V*},B{¥,¥*}] is the Poisson bracket, de-
This follows from the equation fined as for the regular NLS equatih0]

[A{W,W*},B{W¥, ¥*}]

i 1
E(W&X\I’*—\I’*ﬁx\lf)-l-E(al+2a2)|\1’|4

foc (5A 5B 8B  SA SB
=1

7| W[+ 0%

X ST s suF T suF ov )

+ agdy(P* 05V + W oW — |93 W|2) —i aydy(P* G50
+02W* 9y W — W g3 W* — g3V 9, ¥*)=0 (10)

and therefore ensuring the validity of the Jakobi identity.
Thus the wave field governed by E@l) with «,=0 is a
q'—|amiltonian systenil1].

(2) Casea=0, a;=a,. Here, Eq.(1) can be written as

which can be easily derived from E(fl). Other conserving
guantities depend on relations between coefficients in E
(1). As important examples, we consider two cases.

(1) Casea,=0. In this case, Eql) can be obtained from
the variational principle with the Lagrange density 1
P07V + Eaiqurialax(|\p|2«1f)+ia3a§w+a4a§«y=o,

1 1 1
L=Ei(llf*aT\If—\IfaT\If*)—§|¢9X\If|2+§a|\lf|4 (11
1 and one can define the Poisson brackets as for the DNLS
+ Zi aq| P2 (P* 9 ¥ — W 9y ) equation[4]
. (ALY W) B{Y W]
+ Eia’3(\1’* (9;3(\[’—‘1’(9?(‘1'*)+a4|(9)2(\[’|2. (4) . 5B SA 5B SA
- Sy s ose) 42
From Eg.(4) we find, in addition to Eq(3), two more con-
servation laws: Defining the Hamiltonian as
dP 1 o N % H= oodX EI‘I’*& \P_E (\I,\I,*)Z
EZO' P= 5 _m(\lfax\lf —P*o,P)dX, (5 = 2 X 2
dH 1 * * —a3‘I’*&§(‘I’+ia4\I’*&§(\I’), (13)
EZO, HZEIJ (\If*aT\If—\I’aT\If*)dX—f LdX.
(6) one can check that equation
Expressions foP and H follow from the invariance of the dW=[H,¥] (14

Lagrangian with respect to space and time shifts. Therefore, _ )
P will be called momentum andi total energy of the wave leads to Eq.(1) with @=0, @;=a,, and the evolution of

field. Substitutingl in Eq. (6), we arrive at the expression ~any functionalA{ ¥, ¥*} is determined by Eqs9) and(12).
Evidently, for the case in question one can again check the

o 1 1 conservation of the adiabatic invariai{V,¥*} from Egs.
H{¥ ¥*}= fﬁ dX(EI&X‘I’IZ— zoz|‘1’|4 (3), andH{¥,¥*} from Eq.(13).

1 2 I1l. MODIFIED GALILEI TRANSFORMATION
_Z|a1|\l,| (\P*&X\I’—\P&X\I’*)
The transformation

1 .
— Siag(WF a3 ¥ — W ¥*) — a5}V ). W(X,T)=(X=VT,T)e' =01, (15)
7) being applied to the regular NLS equatiom,&0) with

One can check that Eq1l) can be expressed through the

1
_ _ k2
variational derivative of the function&d{W¥,¥*} K=V, @ 2 K% (16
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describes the transition to the reference frame moving with
velocity V and leaves the regular NLS equation unchanged.
This well known result can be expressed as the invariance of
the regular NLS equation with respect to the Galilei transfor-

mation (15),(16). Applying ansatZ15) to Eq. (1), we come

to the equation of the same structure if

1
Q= EKz—a3K3—a4K4, (17

V=K—3azK?—4a,K3. (18)
Indeed, the transformatiofl5) with Egs.(17) and(18), de- \

termining Q) andK at givenV, leads to the following equa-
tion for ¢

1 -
i dpp(X,t) + §a25§¢+ al vl 2y+iaq| |20 _ F_IG. 1. Domain in the pl_anec(l,az) whereA?>0 (hatched!. It
is situated between the linds; [a,=(3/2)a;] and L, [ay,=
i gy ]2+ iasddy+ audty=0, 19 (M2l
where r_ % ' d_‘P
Xx=X-VT, t=T, (20
and
a,=1—6azK—12a,K?, 21
2 a3 “a ( ) A2_4a1(a1+2a2)—(a1+2a2)2 (29)
a3=a3+4a4K, as=ay, (22) B 12 )
q=a—aK. (23 These results are approximately valid at sufficiently small

a3 4 if K, connected with the soliton velocity, satisfies limi-
(In the following we assuma,>0.) Equationg1) and(19), tations following from(21):
in spite of different coefficients, have a similar structure. )
This allows us to say that E€L) is essentiallyinvariant with BasK<1, 12x,K"<1. (30)
respect to the Galilei transformation. At,=0, we have the

complete Galilei invariance. Equation(26) can be written as

(u')?=A%u2(u3—u?)(u?+u?), (31)
IV. SOLITON SOLUTIONS OF EQ. (1) WITHOUT LINEAR
HIGHLY DISPERSIVE TERMS where
Consider soliton solutions to Eql) at , [aA\ 2+ q2—q -
U=———5x2
az=a,=0. (24) 0 2A
They were derived in a number of papers; we shall do this in 2 VAASN + g%+ q
a form convenient for the investigation of the soliton radia- ur= 2A2 ' (33

tion. Looking for the soliton solution in the form
It is easy to see that

11
‘ﬁs(x’t):eXF’[' SNt e(x) }U(X)’ u=u2>0 (q=0), u2=u’>0 (g=<0), (34
u(x)—0 (X— o), (25) provided
we substitute Eqg25) and (24) into Eq. (19) at (24). After AZ>0. (35
some calculationgsee the Appendijx we arrive at the equa-

Condition (35), which will be assumed hereafter, imposes

restrictions ona; anda,: it is satisfied in the region of the
(u")2=N\2u2—qu*—A2u°, (26)  plane (@1,a,), shown in Fig. 1. In particular, this region

includes casea,=0 anda;= a5, considered in Sec. Il; this

tions

1 ) agrees with the explicit expression
¢'=—5(arF2a)u’, (27) .
AZ= L (=0 or a;=a,) (36)
where 4a, °° v
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that follows from Eq.(29). [If condition (35) is satisfied, we ~ 1 .
defineA>0.] P(X,t) =[TU(X) + 7(x,t) Jex §I>\2t+l<p(X) , (46
From Egs.(35) and(31) it is seen that in the soliton
0<u(x)<ug where
. . . . ~ 1

and, thereforey, is the soliton amplitude. From expressions zﬁs(x,t)=ﬁ(x)exp{—i)\2t’ +Hia(0 |, (47)
(32) and(33) one obtains 2

u;=M\Aug. (37 is the soliton solution of Eq19) without the two last terms.

Expressions foili(x) and ¢(x) can be found similar to
It can also be seen from E(R6), that the soliton width is of Egs.(39) and (40); the only difference is that now,# 1. It
order\ 1. Indeed, at large, whereu(x) is small, we have is easy to find that

u'~=+xu, A>0. (39 A A -1z
T(x) =Tigl,| U3 sint?| ——x | + T cost| —x ,
Therefore, the inverse width of the soliton is of order Ja—z \/a—z
Equation(37) expressesi; through the soliton width, ampli- (48
tude, and parameteX(aq,as).
Integrating Eqs(26) and (27), we have _ a1t22a, To \
¢(X)=— —F——arctan—tanh —=x| |, (49
2A U, Ja,

u(x)=ugu,[u3 sinf?(Ax) +uZ cosfF(Ax)]" %2 (39
where a, is defined in Eq.(21) with |ag|+|a,#0 and

a1t 2a u ~ .
o(X)= — ————arctan— tani(Ax) |. 40)  TUo,Uy are given by
2A u;
. . . L 2 ao 4A2)\2
The constant of integration in E¢40) is insignificant. Uoa=542 o +9°%q]. (503
2

These expressions approach the soliton solution of the

regular NLS equatiofwherea=1) if In the following we assume thai,>0 anda,~1. It is easy

4A2N2<?, (41) to see thaflip=T(0) is the amplitude of pulsé48) and,
similar to Eq.(37):

g=~1 (i.e.,|a1K|<1). (42)

Ty =N ay/All. (50b)
Indeed, from Eqs(32),(33) and(41),(42) it follows ) , ,
0s(32),(33) (41,42 Another term in the first bracket of E46), 7(x,t), is a
Up=~\, U;~1/A, (Ug/uy)’~A2\2<1. (43  small addition describing the influence of two last terms in

Eqg. (19). The equation fom(x,t) can be obtained by substi-
Then Egs.(39) and (40) are approximately reduced to the tuting Eq. (46) into (19). It looks rather tedious, even after

soliton solution of the regular NLS equation: linearization with respect tap(x,t). However, at|x|>\,
where the cross terms containing the product&i@f) and
u(x)~ugsecliupx), ¢(x)~0. (44 p(x,t) can be neglected, the resulting equation becomes

much simpler and has the form

V. RESONANT SOLITON RADIATION 2

. 1 . A
A. Quasisolitons and resonant wave numbers 1dimp+ Eazé’in-ir |agé’§77+ a4<?§77— -5 1= 0. (b))

At |ag|+| a4 >0, Egs.(1) and(19) respectively, may not
have soliton solutions vanishing |ad — o and regular in the It describes the asymptotic behaviorgfx,t) at large|x| and
limit | 3|+ | a4l —0. The corresponding criterion at can be easily obtained directly from the linearized E).
Looking for the solution to Eq(51) in the form
|as| + | ey <1, (45
n exp(ikx—iwt), (52
will be obtained below. However, even if such solitons do
not exist but condition(45) is held, one can find weakly we come to the equation
radiating (and therefore slowly attenuatingulses looking
like solitons approximately satisfying E¢l). They can be 2w— a,k?®+ 2a3k3+ 2a,k*—\?=0. (53
called quasisolitons and will be studied in this section, to-
gether with their radiation. Our approach is similar to the oneAt «w=0 the wave(52) is steady in the soliton frame and
developed in Refd.2,3] where quasisolitons, their radiation, therefore it resonantly interacts with the solitonkifs real.
and evolution were investigated far; ,=0 (see also refer- From Eq.(53) we have the following equation fdt at o
ences cited in Refg1,2)). =0
Assuming Eq.(45), we write the solution of Eq(19) in
the form 2a,k*+2azk3—a,k?—\2=0. (54)
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Assume that 4,K<1. Then from Eqs(45) and (22) it fol-
lows that

az<l, a,<l, (55)
and Eq.(54) can be solved approximately. Neglecting the
first two terms in Eq(54), we have the two smallest roots of
this equation

ks s~ =i\ ay. (56)

They are purely imaginary; other two roots should be much

larger. Neglecting the last term in EG4), we arrive at the
equation

2a4k2+ 2a3k_a2=0, (57)
which gives two other roots
—ag*\a3+2a,a,
k1,2m 2a . (58)
4
Unlike k3 4, they are real if
a3+ 2aya,>0, (59)

(ata,=0, this condition is automatically fulfilled

To explore the meaning of the rooks 4, we substitute
=0 and Eq.(56) into (52) and compare the result with Eq.
(48). Then we see that expressi6) represents the inverse
length of the soliton; this is a natural result becavsas a
steady asymptotic solution in the soliton frame, must contai
a term describing the soliton asymptotic behavior.

On the other hand, at conditiof®9), k; , are the wave

V. . KARPMAN

PRE 62
Uj~agk? —apk;. (61)
It is convenient to defing, , in such a way that
[ka|=<kq]. (62
Now consider two limit cases. At
a3>2a,|a,|, (63)
we get
a 3
kl%Z_a?,’ ko~——, |k <|kgl, (64)
2 3
az az
U~ day; Va2 (65
In the opposite case
aj<2ay|a,l, (66)

condition (59) is fulfilled only ata,>0 and we have

1/2

a

k]_%_kzm_ 2_a4 (67)
a, 12

U,~—-Uy~ay 2a, (69)

The results in Eqs(51)—(68), naturally, coincide with those

r%)btained in Ref[2], where the cubic dispersive terms have

not been considered. This is because they follow from the
linearized Eq.(1).

numbers of periodic waves resonantly interacting with the

soliton. It will be seen below that such waves are emitted by

the soliton and thus they may be called the resonant solito
radiation (RSR. Respectively, the rootfEq. (58)] will be
called resonant wave numbers. Condit{éf) is, therefore, a
necessary condition that the RSR does exist and (E6).

describes the quasisoliton and its radiation. For brevity we

call the pulse(47)—(49) radiating soliton[though it is, in
fact, not a soliton solution of full Eq.19)].

If condition (59) does not hold and therefore &lf's are
complex, Egs.(1) and (19) have regular soliton solutions.
They can be found, in particular, by means of the perturba
tion approach, using Eq$47)—(50) as the zero approxima-
tion (the derivation of exact solutions requires rather tediou
algebra. In this paper, however, we will investigate the case
when condition(59) does hold and so we will discuss only
the radiating solitons and their radiation.

The phase velocities of both branches of RSR are, ev
dently, equal to the velocity of radiating soliton. Their group
velocitiesU; (j=1,2) can be calculated from E(h3). Dif-
ferentiating Eq.(53) with respect tk, we have

d
U= hutad :azkj—3a3kj2—4a4k-3, (j=1,2.
dk/, _
j

(60

Using Eq.(57), we can exclude the term with, to obtain

B. Amplitudes and asymptotic behavior of the RSR

N To get a complete description of RSR, one must solve Eq.
(19 with proper initial conditions. For example, the condi-
tion
7(x,t)=0
at

t=0 (69

means that initially we assume a “bare” soliton pulse de-
scribed by Eqgs(47)—(50). At t>0 the functionz(x,t) de-

Scribes a soliton modification and the full radiation, consist-

ing of the resonant radiation and a transient wave emitted
due to the initial condition69). As we have already men-
tioned, the full equation for(x,t) is rather complicated and

it is, generally, difficult to find its analytical solution describ-
ing these effectdSuch a solution, however, has been found,
e.g., for Langmuir solitond12] where the equation for
n(x,t) is simpler. The soliton deformation and the full radia-
tion can be seen in the numerical solutions of the original Eq.
(1), as was demonstrated for the case= a,=0 [3].} In this
paper we will not study the soliton modification which is,
generally, small at conditioi45), as well as the transient
effects that can be neglected at sufficiently largadx. We
shall confine ourself to the derivation of an asymptotic ana-
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lytical expression describing the RSR at latggndx, using  Here g, i(x) are the wave numbers of RSR in the WKB
the approach developed earlier for some other systems i@pproximation and, , are the amplitudes of the correspond-

Refs.[8,9]. ing modes. Evidently,
It is convenient, first, to consider instead of E9) the
following inititial condition Qi) —ki,  Ga(X)—ka, ([X[>Vag/N),
n(X,—tg)=0, to>t, (700  wherek,,k, are the resonant wave numbers approximately

given by Eq.(58) and®(Y) is the step function, defined as
wheret,, is the “transient” time, characterizing a duration of
the transient effects. This permits us to suppose that at O(Y)=1 (Y>0), O(Y)=0 (Y<0). (78

=0 the soliton can be considered as ‘“dressed” and de-
scribed by The O functions in Eq.(77) express that the directions of

propagation and the localization of RSR are determined by
the signs of the group velocitidd; (j=1,2) given by Eq.
}. (7))  (60). At sufficiently large|x|/\, the first term in Eq(76) can

1
lﬂdS(X)ZW(X)eX[{i(I)(X)-‘r Ei)\zt
be neglected and then

The dressed soliton can be obtained, in principle, to any 1

integer order ofe; and a, using a perturbation theor(gee, ¢(x,t)~f(x)exr{i®(x)+ Ei)\zt} (799
e.g., Refs[1,13)). In the zero approximation, it is equal to

the bare solitony,, described by Eq947) and (48)—(50).

Evidently, On the other hand, 4k|< \a,/\, the termf(x) is neglect-

able because; ,, as will be shown below, are very small
PadX)—0, (|X|—») (72 With respect to the soliton amplitude. Thus,sit< Va,/\,

and the effective width ofiyy{x) is of the order of bare l//(X,t)%W(O)exr{iJ’xR(X)dX exF{iq’(XHli)‘zt}
soliton width a,/\; so ¢udx) is exponentially small at 0 2
|x|>Va,/\. Define (79

Following Refs.[8,9], we consider the continuations of

d do

—In VedX) =i|=—+R(x)|, (73 R(x) andq4(x),q»(x) in the complex plane and assume that
dx" 4d0) dx they are three branches of one analytic function. The

h branches strongly couple near the branch points that are the
where roots of equations
i d W(X) R(Z )_ _
=_j— D=01(z1), R(Z2)=02(2). (80)
R(x) i g In Ok (74

Generally, each of these equations has many roots in both
Then half-planes and will consider the roots with the smallest
imaginary parts which, as will be seen later, are the most
essential. A pass around the branch pajntr z, leads to the
transitionqg,(z) -~ R(z) or g,(z2) —R(2).
To find the amplitudes; andc, of RSR, we consider
As far as the transient radiation is neglected and the part gfontours in the complex plane with the ends on the real axis,

n(x,t) describing the soliton deformation is included in Eq. Peginning at sufficiently large distance from the soliton
(71), we can write Eq(46) att>0 as (Ix|>NX). The branch points should be between the contours

and the real axigFig. 2). [In the figure,z, , is purely imagi-

nary, which follows from symmetry considerations and can
+ f(X,t)] also be seen from the subsequently obtained solutions of Eq.

(80).] The choice of half-planes is determined by the rule

. (75

W(X) =W(0)ex+ fOXR(X)dX

P(xt)= [ W(O)ex;{i fOXR(X)dX

1
XeXF{i(D(X)-l— Ei)\zt}, (76) Imz;=—sgnk;, Imz,=—sgnk,. (82

) o ~ Now consider, for example, a cadg<0, d,>0. Then
wheref(x,t) is part of »(x,t) describing the RSR. At suffi-

ciently largety in Eqg. (70), we can temporally také,= k,<0, U;>0, k,>0, U,<O0, (82
and write the asymptotic expression

and Imz;>0, Imz,<0. Consequently, if one moves along
the contoursC, , (Fig. 2), starting from the points; ,, the

O(U:x) integrals

X
f=c; ex;{i fo g1(x)dy

e, exp[i f:qm)dx}@(uzx). 77 | foqu,xxmwkl,zz,
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FIG. 2. ContourLC; andC, in the complex plane for the case
(82).

increase witIm z. (Compare with a similar situation in the
WKB theory[14].)

To calculatec,, consider expressioli76) after a trip
along the contou€; with x;<<0andx>0. Properly deform-

ing C,; we see that this is equivalent to a walk around the

branch pointz;, which leads to the transformation
R(2)—01(2).

On the other hand, traveling along the real axige have no
such changes. From EW76) it is seen thaty(x,t) will be
the same in both cases if after the trip along the {he

W<x>Hf<x>=c1exp[i [aom| @9

On the other hand, from Eqgé75) and(74) it follows that

X
W(x)=W(z,)ex+J R(X)d)(}. (84)
Z
Then, after the pass alor@,
X
W(X)‘)W(Zl)eXF{iJ‘ Q1(X)d)(}- (85)
2
Comparing(83) and(85) we have
. X . X
W(Zl)exl{lf g1(x)dx :Clexf{lfo Qi(X)dX},
4l
which gives
o ;
c1=W(z;)exp —Ifo a:(x)dyx|. (86)
Analogously, traveling along the contoGy,, we get
o ]
co=W(z;)exp _|f0 g2(x)dx |- (87)

Equations(86) and (87) are similar to those obtained previ-
ously for other systems with high-order dispersion tef&is
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They seem to be of general significance. Their applications,
however, become effective if one can use sufficiently simple
approximate expressions ¥{(z) andq, Az). Below we use
rough approximations replacing

W(2)—T(z), Q1A2)—Kqpo, (89)

whereli(z) is given by Eq.(48), describing the bare soliton,
andk, , are the asymptotic resonant wave numbers of the
RSR. Similar approximations were used in R¢&9], where
it was demonstrated that they are rather efficient, leading to
correct results. Rigorous justification of E§8) for complex
z requires tedious algebra and will not be considered in this
paper.

Thus, instead of Eqs86) and (87), we approximately
write

C12~T(Z1 o) exp( —iky 521 o). (89

To find z, ,, we replace Eq(80) by approximate equations

Ro(z1)=~Ky, Ro(z2)=ky, (90)
where
. d T(z)
RO(Z)Z_Id_ZIn'm. (91)

To simplify further calculations, it is convenient to transform
Eq. (48) to the form

Vv1i+p

TU(z)=Tg : (9239
2\
cosf —z|+p
Va,
where
p:ﬁi—ﬁ%: Vayq 920
U+Ts  JaA2\Z+a,q?
From Egs.(508 and(92b) we have
2p
Tp=N\ . 93
0 (1+p)q 3
From Egs.(91) and(92a:
o 2\
i sinh —z
\ Va,
Ro(2)= ——=——F—"—"F— (99
Va, r( 2N
cos
Jarz) "

As far as wave numbells, , are large, the roots of E490)
are located near the poles &,(z). The poles with the
smallest imaginary parts are

Va,

z,=*i—t

2\

w

5 (95)

+ arcsinp) .

Therefore, we look for the roots of E¢QO) in the form
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ko

> +arcsinp—{; 5/,

2, ,= —isgnky p) % (96)

where

97)

a
|14d< >t arcsinp.

[In Eq. (96) we also used Eq81).] From Eqs.(90), (94),
and(96) we have the following equation faf; ,

P(1—c0osfyp)+V1—p®sing;,
V1-p?costy o+ psing ,

(98)

N
Vaglkyd

We will solve this equation assuming that its right-hand side

is small, i.e.,

[SEESVAEH (99)

This means that resonant wave numbers should be much

larger than the inverse width of the solitais will be seen
from further results, only in this case is the intensity of RSR
sufficiently small) Due to Eq.(99), Eq. (98) has small roots
{1, and can be written approximately as

; peyot2y1—p? 2\
1,2 = .
pl1o+V1-p \/a_2| ky 2

Taking into account Eq(97), we now consider two cases.
The first one is

(100

min(g+arcsinp,1)>|§112|>\/1—p7. (101

This is possible ifp? is sufficiently close to one. Ip~—1,
the branch point$96) are close to the real axis and further

results will show that in this case the RSR is rather strong

Then the losses of the soliton would be large, which is be
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Now we can calculate the amplitudes of RSR. According
to Eq.(89), we must first calculaté(z, ;). Using Eqs.(92),
(96), and(97) we arrive at

T(zy 9)=~T [ 2(1+p) 11/2 (106
1,2~ Yo .
20101 p?+ps,
In case(101), using(102), we obtain
21 a,|k
ORI I L (107
{12 A
In case(104), using(105), we have
~ Gy [ Vah | Valkud |2
U2~ \ 7.~ A = . (o8
1,2

Substituting Eqs(96) and (107) into Eq. (89), we obtain

\/a_2| I<1,2| extd — 77\/3—2|k1,ﬂ
A 2\ '

C1= By g (109

Here we introduced complex constafig,, emerging be-
cause of approximations made in determining. These
approximations lead to the errors of order one in the expo-
nent. By the order of magnitudéB, J ranges from one to
ten. A precise calculation d8, , is rather tedious. Because
they are not very essential, we will not explain this in the
present paper. The validity condition of expressib@9 fol-
lows from Eq.(101); after simple transformations it can be
written as

ZAN < 2\ <1 (110
Vaso?  Vaglkid

This is possible only ifp is sufficiently close to+1. At q
~1, from Eg.(103) we obtainuyg~\ and expressiori109
becomes the result obtained earlier for,=0 [2].

" In case(104), which can be written as

yond our adiabatic approximation. Therefore this case will

not be considered. So, we assume in @4J) thatp is close
to one. Then,

2\
(10— (1-p<1). (102
Vaglk, 4
In this case, it follows from Eqg92b) and (93
AAN2<?, Ty=~N/\g. (103

If in addition g~1, we can neglect the nonlinear dispersive
terms in Eq.(1), which leads to the theory at;=a,=0

[2,3].
The second limit case is
|{1d<V1-p%, (104
which includes, in particular, smatl. Then
N
(109

{10 —7——.
Vaglky 4

N 2Uol,
— < \1-p?= s, (111
Valky 4 o+
we have
\/az|k1,ﬂ vz
C12,=B1 4 A
myaslk 2
xex;{—ﬂ 1+—arcsinp> . (112
4\ T

The constant$, , in Eq. (112 are introduced for the same
reason as in Eq109 and they are of the same order.
Comparing Egs(109 and(112), we observe that at

M A <1 (113
ke d

(which is possible only at small-1p), they are of the same
order. The results of Ref2] are still valid at condition
(113); this means that, in fact, the cubic dispersive terms in
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Eq. (1) are negligible(at g~1) not only at condition(110 may be qualitatively changed. At sufficiently small negative
but in the broader regiofiL13). B the changes are not too serious, buiBat0 the quintic
Equations(109 and (112), together with Eq.(77), de- term results in the soliton instabilityin particular, it may
scribe the RSR at initial conditio(¥0) with t,=—. Using  lead to the collapsd15]. In this paper we restrict ourselves
these expressions far ,, we can also write an asymptotic with the cubic Eq.(1), which is a good model, adequately
expression of the RSR for initial conditidf9) at larget and ~ describing many phenomena in the nonlinear fiber optics.
|x| (where the transient effects can be ignoretireads The quintic term at sufficiently smaB can be ignored when
the effects initiated by it are either negligible @n the case
of instability) slow enough compared with those contributed
by the RSR. A detailed investigation of the systems de-
scribed in Eq(1) with the additional quintic term is given in
Here, as beforelJ; are the group velocitieé50). Equation ~ Ref.[15].
(114), by comparison with Ec(77), contains additional fac- (i) As we have already mentioned, the soliton radiation
tors @ (|U;|t—[x|) which mean that the corresponding mode takes energy and momentum from the soliton and this must
of the RSR at the momentoccupies the region between lead to soliton modification that was neglected in the used
=0 and|x|—|U |t. Due to the asymptotic character of ex- above adiabatic approximation. The changes of soliton pa-
pression(114), the soliton size as well as the fine structuresrameters can be evaluated analytically from the conservation
of the radiation fronts are ignored. laws(3), (5), and(6) under some simplifying assumptions, as
In the limit case(63), the resonant wave numbers are was done in Refl.2] for a;=a,=0, a,=0. In this case the
approximately given by Eq(64) and so the contribution soliton amplitude decreases with time logarithmically. On
from the second mode of the RSR can be neglected. Theréae contrary, the soliton velocity(t) increaseqalso loga-
fore, in this case rithmically) and

2
f(x,t)= 2 ¢;0(|Ujt—|xO(Ux)e*. (114

f(x,1)=c,0(|Uq|t—|x)O (U x)ekrX, (115 sgnV(t)=—sgnk;=sgnU; . (117

wherek; andU, are independent oa,. From this it follows  These results were confirmed numericdB}. An approach,
that at condition(63) one can neglect the term with the extending the asymptotic method of RE2] for finite but
fourth derivative in Eq(1). In this case, the RSR is emitted sufficiently smalle; and @,=0, a,=0 gives the same re-
only in one direction, defined by the sign of; (which is  sults. A more detailed and general investigation of the evo-
opposite to sga;). At condition(66), Eq.(114) contains two  lution of radiating solitons will be done in another paper with
terms with approximately equal amplitudes. From E§S)  Shagalov and Rasmussen.

and(68) it then follows that in this case the RSR is emitted  In conclusion, we have studied E(l), representing ad-

in opposite directions and the contribution from the thirdequate models for important nonlinear systems. At suffi-
derivative term is negligible. Note that the second term inciently small @34, Eq. (1) describes quasisteady solitons
Eq. (114 can be neglected not only in the extreme caseesonantly emitting radiation. The soliton core is mainly de-
|kq|<<|ko| but also aflkq|<|k,| (if |k, and|k,| are nottoo scribed by Eq(19) without the two last terms while the latter

close to each othgr plays a decisive role in the RSR. Asymptotic expressions
describing RSR are derived. The Galilei transformation,
VI. DISCUSSION conservation laws, and Hamiltonian structures for @gare
also studied.
First, we would like to add two comments to the obtained
results. ACKNOWLEDGMENTS

(i) Equation(Al) of the Appendix, after substitution ex-
pression(27), contains a quintic term with respect to soliton ~ The author acknowledges useful discussions with A. G.
amplitudeu. The term of the same order emerges if one add$hagalov and J. J. Rasmussen.
the quintic term3| ¥ |*¥ to Eq.(1), which can be considered
as an account of the next order expansion of nonlinearity. =~ APPENDIX: DERIVATION OF EQS. (26) AND (27)

Repeating the calculations described in the Appendix, one Substituting Eq.(25) into Eq. (19) with as=a,=0, a,

then arrives at the same soliton E¢86) and (27) but with —1 and separating real and i . ; tivel
the modified parametek?: r:ave parating nd imaginary parts we, respectively,

Aay(ai+2a,)—(a;+2a,)°+ 88

2:
A 12

(116 u"—Nu—(¢")%u+2qui—2a;0'u®=0, (Al)

"U+2¢'U" +2(ay+ 2a,)uu’ =0. A2
However, the new terng|¥|*¥ in Eq. (1) leads to an ap- ¢ ¢ (@ 2) (A2)

propriate addition, namely- (8/3)(W*W)3, in the Hamil-  Multiplying Eq. (A2) by u and integrating, we arrive at Eq.
tonian (7); from this it is seen that the character of the dy- (27). Substituting Eq(27) into Eq. (A1) and then multiply-
namics of nonlinear patterns described by modified @y. ing by u we have, after integration, E¢R6).
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